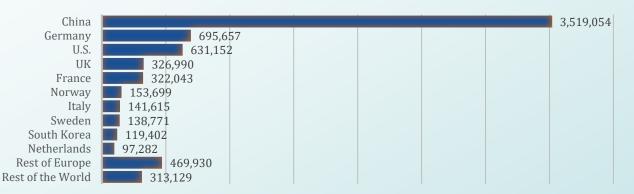


OICA Global Decarbonization Framework

A technology neutral approach to achieve road transport decarbonization by 2050

Introduction/Summary

Global Auto Industry commits to contribute


- But no single government policy or single industry commitment will suffice
- Need to identify range of approaches necessary to cover ALL countries
- ➔ No approach of "one size fits all"

An Electrified Future

- Auto industry \$ 515 billion investment by 2030 for EV (BEV-Battery Electric Vehicles, Plug-In Hybrid, Fuel Cell)
- ≻ 6.6 million EV sales in 2021
- 16.5 million EVs on the road in 2021

EV SALES BY COUNTRY, 2021

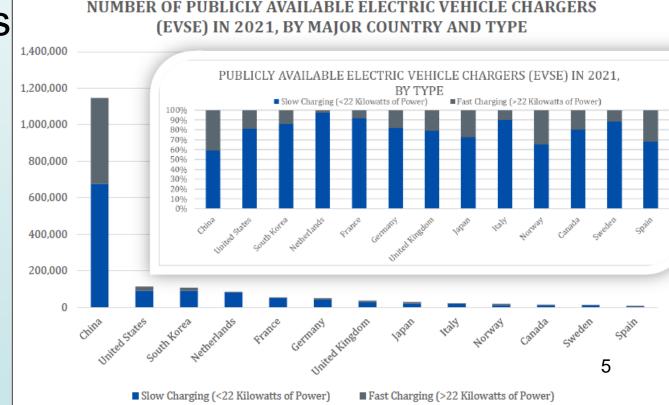
3

- → But large differences between ≠ countries!
- Compare with 1.4 billion vehicles already on the road!

Maximise EV acceptance

A variety of factors:

- →Charging/Refuelling infrastructure
- ➔Affordability/Consumer acceptance
- ➔ Mineral Resources/End of Life policies
- →Decarbonisation of electric grid
- →Supply chains
- →Etc


Charging/Refuelling Infrastructure

>\$ 300 billion investment needed by 2030

Charging needs differ among markets

- ➔ Geographics/Distances
- Demographics
- → Etc

Frederic J. Brown / AFP - Getty Images

Affordability/Consumer Acceptance

- ≻Additional cost EV ←→fleet renewal
- R&D needed for Parity of Cost/Utility/Convenience:
 - → Cost of EV compared to equivalent ICE
 - Additional cost for EV utility/convenience (larger batteries for equivalent range, charging speed, ...)
- Need to provide EV owners similar cost/benefit
- Need to secure supply chains
- Need to provide similar answers for hydrogen (affordability, availability, ...)

Mineral Resources/End of Life

82,000 tons

Mineral resources demand 7

 \succ Lithium as example:

Production 2020: Demand 2030: 3 million tons

>300 new mines for graphite, lithium, nickel and cobalt needed

Surging prices (x7 in May 2022 for lithium compared to 2021)

Decarbonization of Electric Grid

Electric grid / power to

- Charge electric vehicles
 Produce hydrogen
- should be
 - → Clean
 - → Reliable
 - → Resilient
 - ➔ Affordable

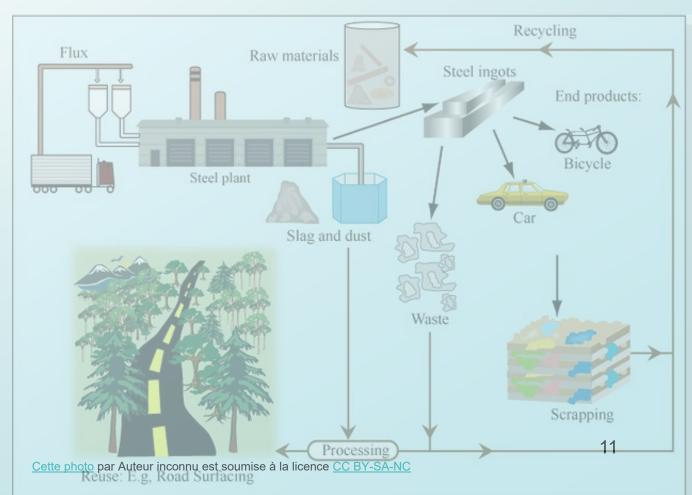
Compatible with various charging needs.

One size fits all?

All the above factors are important!

→ Is full-scale electrification the most realistic or practical solution for all nations around the world ?

Complementary alternatives \succ Brazil example: Lower greenhouse gases with Biofuels → Flex Fuel Engines: 84% in 2021 Electrification not fully suitable for Brazilian situation > IPCC's 1.5° C scenarios possible with combination of: Electrification of powertrains → Use of <u>carbon-neutral</u> auto fuels (synthetic and biofuels) at 30% of 2020 consumption


≻Hydrogen in ICE

Life Cycle Analysis

Need to address complete energy chain:

Well to WheelCradle to Grave

Conclusion

Collaboration to identify the most suitable approach(es) for all individual nations, considering:

- ➔ Economic realities
- ➔ Geographic realities
- ➔ Cultural realities

Electrification will play a leading role in this transition; but it is probably not the most appropriate single technology for all nations.

Conclusion (Cont'd)

Technology neutral approach to enable all nations to implement practical, sustainable, alternative or complementary measures

Competitiveness of the automobile industry

Decarbonize electric grids

Ensure reliable infrastructure

Thank you for your attention